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A rational function approximation of the singular 
eigenfunction of the monoenergetic neutron transport equation 

A Sengupta 
Nuclear Engineering and Technology Programme, Indian Institute of Technology Kanpur, 
India. 

Received 2 February 1984 

Abstract. In this paper we demonstrate how a proper rational fraction approximation to 
the singular eigenfunction of the neutron transport theory can be constructed based on 
the properties of generalised functions and singular integral equations. The parameters of 
the approximant are determined by a proper use of the orthogonality integrals satisfied by 
the Case eigenfunctions. This ensures the convergence of the approximant to its exact 
singular distributional form. Use of Lebesgue integrable spaces made in the analysis leads 
to a new possibility of approximating functions in L,, I < p  <CO, and also of finding 
approximate solutions of singular integral equations. 

1. Introduction 

Orthogonal polynomials, which are the solutions of certain second-order linear diff eren- 
tial equations with variable coefficients, have played a significant role in the approxima- 
tion of functions. This is because these polynomials are the best approximations to 
zero (that is they are the polynomials of minimum norm) in their respective function 
spaces. Thus in L2 and L, the Legendre and Chebyshev polynomials are, respectively, 
the polynomials of best approximation in (-1, l ) ,  which means that an arbitrary 
function in these spaces can be best approximated in a compact subspace by some 
linear combination of the respective polynomials. 

In contrast to the second-order linear differential equations and the classical 
orthogonal polynomials they generate, the integrodifferential equation of monoener- 
getic neutron transport theory gives rise to a maximal (complete) set of non-polynomial 
eigenfunctions such that any arbritrary Holder continuous function in the interval 
(- 1, l ) ,  or the half interval (0, l ) ,  properly bounded at the end points, can be represented 
as a linear combination of them (Case and Zweifel 1967, Roos 1969). These eigenfunc- 
tions are those of the operator (Larsen and Habetler 1973) 

where c is an arbitrary constant that we take less than unity. This operator is the 
inverse of the operator arising in the solution of the monoenergetic neutron transport 
equation i.e., of (Larsen and Habetler 1973) 
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The operators U and To satisfy the eigenvalue equations 

aO4(v,Pu)=(1/v)4(v,CL) 

U 4 ( v ,  P )  = v4(v, P )  

where 

so that 

cv 1 4(v, P )  =-- v e  ( -1 , l )  
2 v - p '  

cv l + u  
A(v)=l--1n- 

2 1 - v  

v € ( - l ,  1 )  

Note that equation (2b) is the general distributional solution of the equation 

( v - C L ) 4 ( v , c L ) = h  

with A ( v )  an arbitrary function, and one of our main motivations in this paper is to 
obtain a rational function approximation of it. 

It is a simple matter to obtain a spectral resolution of U. The point spectrum of 
T, Pu(U), consists of those values of v for which ( U  - V U )  is not 1 : 1. Then it is not 
difficult to see that v must satisfy the equation 

cv v + l  
2 v - 1  
--In-- - 1, u e  ( -1 , l )  

having two real roots *vo. Thus Pr(T) = * y o .  Also, since U is the sum of the self 
adjoint multiplication operator p and the p-compact integral operator c/2( 1 - 
c ) j - l  dpp- ,  the continuous spectrum of U, Cu(T), is that of p, i.e., &(U) = ( -1 ,  1).  
Therefore U has the spectral resolution 

I 

T = v0P( v0) - v&=( - yo) + 1 ' d v vP( V )  

where the ranges of the projection operators P are 

% ( P ( * ~ o ) ) = S P { ~ ( * ~ O ) ,  voe (-1, 1)) 

- I  

%(Wv))=Sp{4(v) ,  v e ( - - l ,  1)). 

These projection operators are orthogonal i.e., %(la( v)) l%(P(  v')) v # v', Hence 9 ( U ) ,  
the domain of U, can be decomposed as 

9 (U = % (P ( vo)) 0 % (P ( - vo) ) 0 % (P ( v) ) 
which implies that if f(p) E 9 ( T ) ,  then 

f(p) = ao+4(v0 ,  P )  +ao-4(-vo, IL)  + A ( v ) 4 ( v ,  p )  dv.  (3) 
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In the classical formulation of equation (3)  (Case and Zweifel 1967), 9 ( U )  is the 
space of Holder continuous functions on (-1, l )  or (0, I), with proper boundedness 
properties at the end points, that is the space of Holder continuous functions in the 
extended sense. This restriction on 9 ( U )  is imposed by the theory of Hilbert boundary 
value problems and the theory of singular integral equations (Roos 1969). However 
the same results hold if f(p) E Lp 1 < p  < 03, as shown in 0 2 below. In fact, a major 
objective of 0 2 is to demonstrate this possibility. 

The discussion above indicates that it is possible to use the eigenfunctions 
{4(* vo, p ) ,  4( v, p ) ,  -1 < v < 1) as a complete set in representing an arbitrary function 
in Lp 1 < p < W. The advantage of doing this is that unlike in an infinite series that 
the use of classical orthogonal polynomials entails, equation (3) does not involve any 
convergence arguments and the expression on the right is a pointwise representation 
of the function on the left. The disadvantage of equation (3)  is that it is a singular 
integral equation for the expansion coefficient A( v). This equation can be solved by 
converting it to a Hilbert boundary value problem (Roos 1969) or by numerical means 
(Dow and Elliot 1979, Elliot 1982). The A( v) will, however, involve the normalisation 
factor, 

N ( v )  = v / g ( c ,  v), g - ' (  c, v) = A 2 (  v )  + $ r 2 c 2 v 2  

because of the ortFogonality of +( v, p )  (Case and Zweifel 1967), and further evaluation 
of the integral I-, A( v ) 4 (  v, p)dv, to reconstruct the function from its expansion 
coefficients becomes difficult. The reconstruction may be achieved by, for example, 
expanding A(v) in a power series in v. In its use in neutron transport theory, the 
integrand A( v ) 4 (  v, p )  is to be further multiplied by exp(-x/ v) before this integration 
is carried out, thus compounding the difficulty. This constitutes a practical drawback 
in the use of the Case eigenfunctions as a (topological) basis for functions in Lp and 
suggests the need for an approximation procedure that replaces the integral in equation 
(3) by a sum i.e., a procedure that discretises v E (-1, 1). The motivation of this crucial 
step is contained in the argument that any finite interval of the real line is separable 
in the usual metric because the rationals form a denumerable dense subset of R. 

In this paper we demonstrate that it is possible, using the notion of equivalent 
Cauchy sequences in the theory of distributions, to find a proper rational function 
approximation of the singular eigenfunction of monoenergetic neutron transport theory 
i.e., of equation (2b), leading to a discretisation of V E  (-1, 1). Section 2 develops the 
necessary mathematical framework, which is then applied to the problem of finding 
the rational function approximation in 0 3.  Our arguments in this section are also 
based on the ideas introduced by Sengupta (1982). In order to gain a proper perspective 
of the method, we discuss in 0 4 three different ways by which the unknown coefficients 
of a rational function approximant may be obtained and illustrate their use with the 
simple regular function exp(x). The example shows that the method adapted by us 
has advantages over the other two, and provides a necessary support for the method. 

2. Mathematical formulation 

We present in this section, various results in the theory of the Hilbert boundary value 
problem and singular integral equations that are necessary to further development. 
Our basic aim is to examine this theory from the view point of distributions, or 
generalised functions, and to demonstrate how Cauchy sequences in a suitable space 
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of (test) functions can be used to formulate our approximation method. The main 
results of this section are: (a) Theorems 2 and 4 as applied to a finite interval. These 
theorems allow us to give a precise meaning to the convergence, as also the motivation, 
of a rational function approximation of the singular eigenfunction, equation (2b), 
constructed in 0 3 and (b) to show that it is possible to consider the domain of U to 
be functions in L,, and thereby to conclude that equation (3) holds for L,, 1 < p < 03. 

We do not give any proof of the stated results and provide only the essential discussions. 
The details may be found in standard references, for example in the books by Sadosky 
( 1979), Korevaar ( 1968) and Titchmarsh ( 1937). 

The Hilbert boundary value problem for a finite open contour is the following. 
Find a sectionally analytic function @(z), z = x +iE, which has as its boundary a open 
contour r ;  specifically we consider r = (a, b) on the real line. @(z)  is to be suitably 
bounded as z tends to the end points a and b and to vanish as /zI + cc. The boundary 
conditions to be satisfied by @(z)  on is 

@+(x)  = A(x)@-(x) +B(x) ,  x E ( a , b )  (4) 

where A(x) and B(x) are arbitrary Helder continuous functions on (a, b) and A(x) 
is, in addition, non-vanishing on r. A related equivalent problem is that of a singular 
integral equation (SIE) with Cauchy kernel. Such an equation can be obtained from 
equation (4), or equivalently equation (4) can be transformed into a SIE.  Thus, consider 
a function 4(x) ,  Holder continuous in the extended sense on (a, b), for the sectionally 
analytic function 

z = x + i E  
l b  

@ ( z )  =z la F d x ' ,  
x - z  

with boundary values on (a, b)  expressed as 

@+(x)  = lim @(x +iE); @-(x) = lim @(x -iE), 
E ' O  E ' O  

where we always write E + 0 to mean E + 0 +. Now using the Plemelj formulae for the 
boundary values, 

@'(x) =44(x)  +-& f a b  dx' 

@-(x) = - f 4 ( x )  +L fab E dx' 

XI-x 

2 Ti 

or, equivalently the equations, 

@+(x)  - W ( X )  = 4 ( x )  

we get from equation (4) the SIE for 4 ( x )  

a ( x ) d ( x )  + P ( x )  & -fab dx '=  B ( x ) .  
x - x  

Here 4 denotes a principal value integral and 

a ( x )  =$( l  +A(x)),  P(x) = 1 -A(x) 
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are Holder continuous functions. The relevance of S I E  in monoenergetic neutron 
transport theory arises from the fact that equation ( 3 )  leads to such an equation for 
the expansion coefficient A( Y). 

Now consider I < = @  the real line. Then in the integrals above, the limits can be 
replaced by -00 and 00, and the Hilbert problem is simplified as it is no longer necessary 
to specify the end conditions on r separately. Hence if in equation ( 5 )  we decompose 
-i/(x’- z )  into its real and imaginary parts to get 

XI-x E 
+ i  -- - 1 

x’-z (x’-x)*+E (x‘-xX)2+&2’ 

we have 
02 

E x-x’  
@ ( z )  =- 2 4 ( x t )  dx’ +L 27r 1 -,(X-x‘)2+E 2 44x7 dx 

6 , ( ~  - x’)c$(x’) dx’ Po, ( X  - x ’ ) ~ ( x ’ )  dx’ 
m 

=;U(X, E )  +fiV(x, E )  

where, by definition, 

1 E  1 x  
6,(x)=-- &(x)=-- 

Tr X2+E2’ TrX2+E2’ 

and 

4(”) ,dx!  U(x, E )  =- 
Tr E I‘ -E (x’-X)*+& 

XI-x 
V(x, E )  = -- 2 2 4(x’)  dx’, 

7r 5‘ -E(x’ -x)  + E  

the real and imaginary parts of the Cauchy integral representation of Ca( z )  with density 
function 4 (x ) ,  are known as the Poisson and conjugate Poisson integrals of 4 generated 
respectively by the kernels 6, and PoS of the operator 5 6 :  4+564 = k * 4  
where 

a2 

k * 4 = I _ ,  k(x-x’)d(x’)  dx’. (9) 

We now introduce (Korevaar 1968) those concepts from the theory of generalised 
functions necessary in our further development. 

Dejnition 1. The space of test functions 9, consists of all real valued functions cp that 
are infinitely smooth and zero outside some fixed finite interval J with convergence 
in ’3 defined in the following way. cp, + Q E 9 if ( a )  the supporting intervals of pj and 
Q belong to a fixed sub-interval I c J, and ( b )  ( p j m ) +  9‘”’) uniformly on I for all rn 
and j .  Therefore cp E ~ ( Z ) + Q  E C y ( I ) .  

The common example of a test function normalised to unity is 
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with 

c i l  = J m  exp( -=) a2 dx. 
--'D a - x  

Definition 2 .  A sequence of integrable functions {fk} in a normed linear space V (  a, 6 )  
is said to converge to f relative to the class of test functions in 9 if {fkp} and up} 
are in L, and 

lim Jobf*(x)p(x) dx = Job l imfk(x)p(x) dx 

= [ o b f ( x M x )  dx, V p  E 9. 

Definition 3. A sequence {fk} E V( a, b )  is said to be Cauchy if for every E > 0 there 
exists integers J and K such that 

Job ( J ;  - f k M x )  dx < E, whenever j > J, k > K. 

b 
Since the set of real numbers 5, fk(x)p(x)  dx is complete, every Cauchy sequence 
I f k } +  f in the sense of definition 2.  

Definition 4. A distribution F (or a generalised function) is an element of the completion 
of the linear metric space V(a, b ) .  That is, a distribution is an equivalence class of 
Cauchy sequences {fk}, or the common limit of equivalent Cauchy sequences in V( a, b ) .  

An alternate definition of a distribution that follows from the above is that it is a 
continuous linear functional on 9 i.e. FE 9' such that 

FJP) = lim [obfk(x)dx)  dx, VQ E 9. 

The two most significant singular distributions in our work are the Dirac delta 
functional and the Principal Value distribution. Among the various equivalent Cauchy 
sequences in R of which these are the limits (Korevaar 1968), we choose 

1 E  
S,(x) =-- 

i?X2+E2 

X P,(x)= rPo,(x)=- 
X2 + E 2  

to be the most relevant to our problem. Thus 
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and from equation (8) it follows that 

z = x * iE.  
1 -+ P-* i.rrS(x' - x), XI-x XI-x 

1 

We will examine the convergence properties of these distributions below. 

Definition 5. For two Lebesgue integrable functionsf(x) and g(x), X E  R, their convol- 
ution f (x)  * g(x) is a well defined function and is given by 

m 

h ( x ) = f ( x ) * g ( x ) = /  -cc f (x-x ' )g(x ' )dx '  

m 

= g ( x )  * f ( x ) = /  g(x-x')f(x')dx'. (11) 
-m 

Now if L. E L,(R), it is easy to see that the following holds for the translated function 
= f ( x  - Y ) ,  

Ilf,llP = Ilfll,. 
A property of the convolution operator that follows from its definition and equation 
( 1 1 )  is contained in the following theorem. 

Theorem 1. If f E L ,  and gELq, l s p , q < a ,  p - ' + q - ' s l ,  then f * g E L , r - l =  
p- l  +q-'  - 1 and 

Inparticularifp-l + q - '  = 1,thenr =m,andwehaveIlf* g((,= ((f((,((g(j,,,wherepandp' 
are conjugate indices. 

The equivalence class of equation ( loa )  is a particular case of the following 
characterisation of such classes. 

Definition 6. If $(x) is a non-negative integrable function over R,  if J', $(x) dx = 1 
and if x$(x) + 0 as 1x1 + 00, then the sequence {S,(x)} = {$(x/E)/E} is an equivalent 
Cauchy sequence for the delta functional S(x), i.e., 6,  + S in 9'. 

Equation ( loa )  is a specific case of definition 6 for $(x) = ( ~ ( 1  +x2))- ' .  More 
generally, we call a sequence of locally integrable functions { $ E ( ~ ) }  on R a delta 
sequence of positive type if it satisfies the following conditions. 

(i)  J'!A GE(x) d x +  1 as E + 0 for some finite constant A 
(ii) For every constant a > 0, +hE(x) + 0 uniformly for a 4 1x1 
(iii) (LE(x) 2 0  for all x and E. 

as E + 0 

Thus while S,(x) is a delta sequence of positive type, so is the sequence of equation 
(16) below, though this is not obtained from definition 6 .  

The convergence of distributions, being with respect to test functions, is not very 
useful in applications as the conditions imposed on the class of test functions are 
rather restrictive. Nevertheless, it is true that given an E > 0, and a f~ Lp there exist 
test functions arbitrarily close to f: To see this, consider a continuous function with 
compact support, g E CO, arbitrarily close to f; If(x) - g(x)/  < +E. That such functions 
exist follows from the dominated convergence theorem. Now construct pa * g, i.e., 
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the function 
iD 

PIU = 5, Pu(x-x')g(x') dx', 

where pu is the test function of definition 1. Then q l a  E C: and Iqla -gl < ; E .  Thus 
I f -  qlal < E ,  and the space of infinitely smooth functions with compact support is 
dense in Lp 1 S p < CO. Definition 1 now completes the proof of the above assertion. 
From the definition of delta sequences, we may now state the following result for the 
convergence of the Poisson integral, U(x, E ) ,  relative to functions in L,, and not 
necessarily in 9. 

Theorem 2. If 4 E L,, 1 s p < CO, then 4e = 4 * $, tends to 4 in L, as E + 0. In particular, 
thePoissonintegralof4,4, = a ,  * 4 = I  SE(x-x ' )4(x ' )  dx'tendsto4,i.e., ~ ~ 4 - 4 e ~ ~ p + 0  
as E + 0. The convergence is also both pointwise A E  and uniform if 4 is, in addition, 
continuous on every compact subinterval of R. 

Having considered the convergence properties of the Poisson integral, we now turn 
to the conjugate Poisson integral generated by the conjugate Poisson kernel, equation 
(lob).  Define the Hilbert transform of 4 E L,, 1 S p <CO, by 

then the M Riesz theorem states the following. 

Theorem 3. The Hilbert transform H is a bounded linear operator on L,(R), 1 < p  < CO. 

In other words, given 4 E L,(R), 1 < p  <CO, H 4  E L,(R), i.e., there exists a constant 
A, independent of 4 such that 

It must be noted however, that if p = 1, H 4  does not necessarily belong to L,. 
Nevertheless it is true that (Titchmarsh 1937) 

IR dx < CO, O < p < l .  1 +x2  

The following theorem states the nature of the convergence of HE+ = -Po€ * 4 to H4. 

Theorem 4. If 4 E L,(R), 1 S p  <a, then { H e + }  tends to H 4  in L, as E + 0, i.e., 
llH4 - H E 4  11, + 0 as E + 0. The convergence is also pointwise AE, 

Moreover, i fp  > 1, both H& and H 4  satisfy the M Riesz theorem with the same constant 

In passing we note that Plemelj formulae follow from theorem 2 and equation (13). 
If instead of the whole real line, we restrict ourselves to a finite subinterval ( a ,  b ) ,  

then the basic property of the convolution integral, equation ( 1  l ) ,  no longer necessarily 

A,. 
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holds. For 

Y(x )=+(x )  * +(x)=  ~ ( x - x ’ ) + ( x ’ )  dx’ 

a < x < b  

I: 
x-c 

= 6, 4(x’)+(x -4 dx’, 

and the last integral is not necessarily equal to 

ICd ~ ( x ’ ) + ( x - x ’ )  dx’. 

If, however, we wish this to hold, that is if we wish that 

4 ( x )  * +(x) = $ ( X I  * #(x),  a < x < b ;  c < X I  < d ’ ,  

then one of the following conditions has to be satisfied. 
(i)  4 ( x )  and +(x)  are periodic functions with period d - c. (An application of 

this is to the formula for the partial sums of trigonometric Fourier series in ( -T ,  T )  

involving Dirichlet sequences.) 
(ii) x - c = d and x - d = c that is x = c + d. Choose c and d to satisfy this equation 

for all 0 s x s A, where A can be either finite or infinite. For example, we may take 
c = 0 and d = x. (An example of this is the formula for the product of two Laplace 
transforms.) 

(iii) If neither (i)  nor (ii) holds, but x - c = b and x - d = a, i.e., b - a = d - c then 
with a = c, b = d we have 

lab ~$(x-x’)$(x’) dx’=  &(x’)+(x-x’) dx’ 
l a b  

and the convolution property is satisfied. In general, however, one can show that 
(Korevaar 1968) if the support of + is [c, d ] ,  then a sufficient condition for the existence 
of the convolution on (a,  b )  is that 4 ( x )  be integrable over ( a  - d, b - c). Furthermore, 
if for +(x)  we consider a delta sequence of positive type, GE(x), then 

4,(x) = lab 4 ( x  - x’)+,(x’) dx‘, a < x < b  

I$(X - X ’ ) + ~ ( X ’ )  dx‘ 

where +:(x) = +,(x)x[u, b ] ,  x [ a ,  b] being the characteristic function of (a, b), whenever 
the above conditions on 4 and + are satisfied. On the finite interval, then, theorem 2 
becomes the following. 

Theorem 5. Let be a delta sequence of positive type with supports in [c, d ]  and 
let [a, b ]  be any given interval. If 4 E Lp( a - d, b - c), 1 s p < 00, then the convolutions 
de = +E * 4 converge to 4 in the L, norm inside (a, b ) .  This convergence is also 
uniform in every subinterval of (a,  b )  if 4 is, in addition, continuous in (a ,  b ) ,  and 
pointwise in (a ,  b )  if 4, beside being continuous on (a,  b ) ,  belongs to L,(a, b). 

In this work we will be concerned only with the case d - c = b - a, i.e., with condition 
(iii) above. Then (Korevaar 1968) theorem 5 implies the Weirstrass approximation 
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theorem for the approximation of a continuous function in (a, b ) ,  as can be demon- 
strated by using the delta sequence 

A 2 b - a, with 
b 

Ck= [ ( A 2 - x 2 ) k d x ,  
J a  

and then (Lk  + 6 ( x )  as k -+ CO. 

Because of equation (13), it follows that theorem 4 also has an equivalent version 
on 2 finite interval. This together with the Riesz Theorem, implies that the condition 
of Holder continuity for the density function 4 ( x )  in S I E  (7) can be replaced by Lp 
integrability, 1 < p < CO. 

In the definition of delta sequence, it is usual as in equation (16)  above, to take 

lab * E ( X )  dx = 1 

where the integration is over the support of $ E ( x ) .  Thus 

1 E  
6 , ( x ) = - -  a < x < b ,  

7TE x2 + E 2 ’  

T, =tan-’(  b / E )  - tan-’(a/e).  

i.e., 

and 

We also use the notation 

and 

1 x  
FJoc(x)=--  

T X2+E2’  
a s x x b .  

A delta sequence not of the positive type but widely used in the theory trigonometric 
Fourier series in the Dirichlet sequence defined by 

l X l > T  

and limk+m D E ( x )  + S ( x )  in the distributional sense of definition 2 .  The partial sums 
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fk(x) of the Fourier series for f (x)  can be shown to be given by 

fk(x)  = Jot f (x ’ )~ : (x -x ’ )  dx’ 
-cc 

a 

= [-,f(x - x’)D:(x’) dx‘ 

oc 

= j-,f(x +x’)D:(x‘) dx’ 

m 
- -  ’ 
- 2  

[f(x-x’) +f(x +x’)]D:(x’) dx’. 

We do not need to go in the details of these sequences and the convergence characteris- 
tics of the fk(x) they generate but merely remark that in this case f (x )  must satisfy 
different, and more stringent, properties than those for the sequence of positive type 
mentioned above. 

To end this section, we note, incidentally, that the difference between a finite and 
infinite region of integration in the solution of a singular integral equation is clearly 
demonstrated in the inverse Hilbert transform. Thus if 

then the inverse transform is given by the symmetric formula 

but if 

then for g ( z )  to behave properly at T l  and vanish at infinity, one has the more 
complicated solution 

In the next section, we apply the present results to write down the rational function 
approximation of the singular eigenfunction, i.e., of equation ( 2 b ) ,  as equation (19), 
and then apply the Case orthogonality integrals in the manner of Sengupta (1982) to 
obtain its coefficients. 

3. The approximation problem 

According to equation (3), any function Holder continuous in the extended sense can 
be expressed as 
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Inserting the expansion (2b) for +( v, p )  we get 

where g ( p )  on the LHS is the function 

f ( p ) - a o + 4 ( U o , p ) - a o - 4 ( - v o , p )  

and is also Holder continuous, either on (a ,  b )  = (- 1 , l )  or on (0, 1) when a,- = 0. If 
A( v )  E L,(a,  b) also, then from theorems 3 and 4 applied to the finite interval (a ,  b), 
H(vA)E‘L, (a ,  b), 1 < p < c o ,  and 

H (  vA) = lim H E (  vA) 

1 

E - 0  

=- lim 

Hence the SIE has a solution for g ( p )  E L,, 1 < p <CO, and therefore equation 
valid when f(p) E L,, 1 < p  < 00. In fact we have the general result (Titchmarsh 

(3) is 
1937) 

that when 4 ( x )  E L , ( R ) ,  1 < p  <00, and also satisfies a Holder condition on R with 
index CY < 1, then H 4  (which is in L,(R) by theorem 3) is also Holder continuous 
with the same index CY. It is to be observed that the result fails to hold when CY = 1. 

In view of the remarks of 0 1, we now introduce a rational fraction approximation 
for 4(  v, p ) ,  Y E  (-1, l ) ,  that tends to the RHS of equation (26) as E + O .  Following the 
basic ideas introduced in Sengupta (1982) (we shall henceforth refer to this work as 
I), we use the orthogonality expressions satisfied by {$I( f vo, p ) ,  4( v, p ) }  to determine 
the coefficients of the rational function approximant of +( v, p ) .  There are three such 
independent integrals, (1.15), (1.16) and (1.17) for the full range case, and two for half 
range, equations (I .7a,d)  besides equations ( 1 . 6 ~ )  and ( I . 7e )  that completely specify 
the problems. Based on the discussions of § 2, we can conclude that the proper [1/2] 
rational fraction approximation &( v, p )  for c$( v, p) ,  U E  (-1, l ) ,  is 

which tends, as E + 0, to the sum of the two distributions that comprise 4(  v, p ) .  (This 
statement on the convergence of 4, is made more precise below.) Approximation (19) 
can be used, because of theorems 2 and 4 restricted to the finite interval, in equations 
(1.15), (1.16) or (1 .7~) .  However equations (1.17) or (I.7d) are not covered by these 
theorems. To see how these equations can be used, we note that they can be written 
as the convolutions w ( p ) q j E (  v, v - p )  * c&( v’, p )  where (Case and Zweifel 1967, I )  

f( t - a )  * g( t )  being defined as If( T - a ) g (  t - T )  d.r. This convolution converges, as 
E +. 0, to J w ( p ) ~ $ (  U ,  p ) 4 (  v’, p )  d p  distributionally. This is a consequence of the result 
(Korevaar 1968) that iff, and g, are two distributions such that fE +f and g, + g, then 
fE * g, exists as a distribution if eitherf, or g, has bounded support and thenf, * g, +f * g. 
(This, for example, allows us to write 6 (  v - p )  * 6 ( p )  = J$( v - p ) S ( p  - v’) d p  = 
6 (  v - v’)). Therefore the above, together with the results of 0 2 ensures that if &( U ,  p )  is 
given by equation (191, then equations (1.15), (1.16) and (1.17) or equations (1.7~1) and 
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( I . 7 d )  can be used to obtain the unknown coefficients, and in this case we also have 

( 2 0 a )  l l+( .  , C L )  - + E (  * ,  F ) l / P  + 0, 

as E +O.  Of course, it is to be understood that the convergence implied by equations 
( 2 0 a )  and ( 2 0 b )  is in the sense of the theorems of § 2. 

Using the normalisation of 4c, equation ( 2 d ) ,  we get from equation (19), 

where rE = 2 tan-' 1 /  E and we have A, + A. For agiven non-zero choice of E ,  there are two 
parameters in equation (19) that can be used to fit 4F( v, p )  to +( v, p) .  One of these is 
obviously the desired discrete {vj}-as E + O ,  {v,}+(-1, 1) or (0, 1)  as the case may 
be-while the other is c, -j c. We can use any two of the three orthogonality integrals for 
the full range problem, the equation omitted ensuring that there exists a solution for the c, 
and { v,}, E > O t ,  while in the half range case any one of the two systems of two equations 
each, namely either ( 1 . 7 ~ )  and ( I . 7 d )  with N ( v )  on the RHS replaced by the obvious 
approximation 

N , ( v ) = v [ h ~ ( ~ ) + ~ ~  I 2 2 2  C , Y  3, 

or equation ( 1 . 7 ~ )  and one of the various integrals that may be derived-e.g., equation 
(I.7b) with the actual c in its RHs-can be used. Any of these choices will give a valid 
approximate solution. Obviously, in equations (I. 17) or (I.7d) we use a,( v - v') on 
their RHS. Once the c, and { vj} have been determined the f(p) E Lp 1 < p  < 00, and the 
solution of the neutron transport problem, can be written as the desired finite sum (I). 

4. Discussions 

In this section, we give an account of some methods for obtaining the coefficients of 
a rational function approximation so as to be able to gain a perspective of our method 
of 9 3. 

Let f ( x )  be a continuous function in ( a ,  b )  and let P M ( x ) / Q N ( x )  be a rational 
fraction approximation to f in a s x 6 b such that 

M P M ( x )  a , + a , x + - . . + a , x  -- 
& ( X ) -  l + b l ~ + . . . + b N X ~  

Then the coefficients {a i } : ,  { b i }  may be obtained by any one of the following methods. 
(i)  Consider f ( x ) Q N ( x )  - P M ( x ) .  Expand f ( x )  in a Taylor series in x (or, in a 

series of orthogonal polynomials r i ( x ) ,  in which case both PM and QN are to be 
expressed in terms of the same set of polynomials), multiply the series for f and QN, 
and equate the first M + N + 1 coefficients of fQ - P to zero. This means that the 
difference R , , ( x )  = f Q N  - PM = O ( x M t N + '  1. If orthogonal polynomials are used, then 

t If all the three equations are used in the determination of the constants, then the only possible solution 
i sc ,=c ,{v ,}=(-1 , I )and  B = O .  



2156 A Sengupta 

it must be possible to write v i r j = Z k  Aijkrk and have R M , N ( x )  - ; O ( T M + N + , ) .  This 
procedure gives the standard [ M /  NI Pad6 approximation to f ( x ) .  

(ii) Choose the coefficients such that the least square error of f Q N  - PM is 
minimised. Then the coefficients are the solution of the set of equations 

job w ( x ) ( f Q N - P M ) r i ( X ) d X = O ,  i=O, l ,  . . . , .  V + N ,  

where the T , ( x )  are either orthogonal polynomials or x i ,  and w ( x )  is a suitable weight 
function. If orthogoncl polynomials are used, then (i)  and (ii) give the same solution 
i.e., {a,} ! ,  { b i } f j ,  are the solutions of the M + N + 1 equations 

( ~ Q N  - PM, Ti) = 0, 

( f Q N ,  T, )  = 0, 

i = 0, 1, , . . , M 

i =  M + l , .  , . , M + N 

while the coefficients of R M . N ( x )  are given by ( fQN, T,)  = 0, i = M + N + 1, . . .. On 
the other hand, if T , ( x )  = xi, then (i) leads to the set of M + N + 1 equations 

j 

, = j - "  
O =  cib,-l,  j = M + l ,  . . . ,  M + N  

{c , }  being the expansion coefficients of f ( x ) ,  and (ii) to the equations 

( f Q N  - PM, x ' )  = 0, i=O, t, . . . ,  M + N  

for the { a , }  and {b,}.  In both (i)  and (ii) the error is f- P M / Q N  = R M , N / Q N  where 
fQiv - PM = R , N .  

(iii) As a variant of (ii) we may determine the coefficients from the nonlinear 
equations 

SO that R , ,  = f - P M /  Q N  
The formulation of 0 3 is an adaption of (iii) while that suggested in ( I ) ,  i.e., a 

constrained Pad6 approximation, is a combination of (i)  and (iii). The present method, 
as compared with that of ( I )  is simpler and more pertinent to our problem. 

As a comparison of the different approaches above, consider the rational approxima- 
tion of exp x in terms of x.  Then we have for the [ 1/ 11 approximant, 

a, + a ,x  
1 + b , x '  

[1/1]=- 

the following sets of equations for ao, a, ,  6 ,  in the interval (0,2). 
(i)(a) Pad6 approximation 

uo= 1 

a,  = 1 + b ,  

0 =; + b , .  



Monoenergetic neutron transport equation 2757 

(b) Constrained Pad6 approximation with constraint m, = 1; (a, + a lx ) /  
(1 + b,x) dx, 

a,= 1 

a, = 1 +b ,  

bl = i{exp[b:( 2/ b, - m, +2)] - 1). 

(ii) Minimising error of fQI - PI in L2(0, 2), 

2ao+2al  - mlbl = mo 

2ao +$al - m2b1 = m, 

$,+4a1 - m,b, = m2. 

(iii) Moments of f  and PI/ QI equal 

2a0+2a,  -m,b,  = mo 

!al - m2bl = m ,  -2ao 

1 a1 a, = (mobl - 2 a l )  +- 
In( 1 +2b,) bl 

where 

mi = lo2 exx' dx. 

To solve the above sets of equations, one can proceed as follows. Iterate for b, in (i)  
(b) and then solve for a, and a,. In (iii), the three nonlinear equations can, by proper 
elimination, be reduced to the two linear and one nonlinear equations shown. The 
two linear equations are the same as the corresponding equations of (ii). To solve for 
the set (iii) therefore, use a,, bl as obtained in (ii) as the first iterate in the third 
equation of (iii) and use this a, for obtaining revised values of a,  and b, from the first 
two equations. These are then used in the third equation to get an improved value of 
a, and the process continued till proper convergence is obtained. 

The respective value of the coefficients for exp(x) are 

(i) (a)  a,= 1, U ,  = 0.5, bl = -0.5 

(b) a o = l ,  al =0.632 610, bl= -0.367 390 

(ii) a, = 0.955 215, a ,  = 0.903 751, b, = -0.3 18 406 

(iii) a,= 0.945 516, a ,  = 0.930 482, bl = -0.3 14 345. 

This sample calculation shows immediately the advantage of using integral constraints 
as compared to standard Pad6 approximation: no unusual behaviour of the 
approximant, like the pole at x = 2 occurs. This is true for all orders of approximation 
and all finite intervals, and provides the assurance of our method. 

We conclude this paper with the following comments. The present method shows 
that any function in Lp p >  1, can be expressed as equation (3), and hence has an 
approximation with respect to the basis set constructed from the discretisation of v. 
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Expansions of generalised functions, like the Dirac delta, in terms of the Case eigenfunc- 
tions can be understood from the discussions in 00  2 and 3. Though equation (19) is 
a [1/2] approximant, there are only two parameters to be determined, as compared to 
the usual four, because oftheir combination in equation (19). The fundamental result on 
which this paper is based is the convergence of the Poisson and conjugate Poisson 
integrals U(x, E )  and V(x, E )  as E + 0, which suggests a new approximate method of 
solving singular integral equations, for some non-zero E, by converting it to a Fredholm 
integral equation. Thus, the SIE (7), 

1 

a ( x ) + ( x ) + p ( x ) l f  21ri - ,x ’ -x  mdx’=B(x)  

can be replaced by the approximately equivalent Fredholm integral equation 

and because of § 2, we must have 

+E(X)+ 4 (x ) ,  E + O  

the convergence being in accordance with the theorems stated there. The results of 
our investigation into this approach for the approximate solution of SIE will be presented 
subsequently. And finally, on a point of emphasis, equation (19) is our rational function 
approximation to Case’s singular eigenfunction, equation (26). 
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